Sensor Summary

- Visible Light/Heat
 - Camera/Film combination
 - Digital Camera
 - Video Cameras
 - FLIR (Forward Looking Infrared)
- Range Sensors
 - Radar (active sensing)
 - sonar
 - laser
 - Triangulation
 - stereo
 - structured light
 - striped, patterned
 - Moire
 - Holographic Interferometry
 - Lens Focus
 - Fresnel Diffraction
- Others
- Almost anything which produces a 2d signal that is related to the scene can be used as a sensor

Depth Images (Stanford)

Depth Images

- Digitization: conversion of the continuous (in space and value) electrical signal into a digital signal (digital image)
- Three decisions must be made:
 - Spatial resolution (how many samples to take)
 - Signal resolution (dynamic range of values)
 - Tessellation pattern (how to 'cover' the image with sample points)

Digitization: Spatial Resolution

- Let's digitize this image
 - Assume a square sampling pattern
 - Vary density of sampling grid

Spatial Resolution

Coarse Sampling: 20 points per row by 14 rows

Finer Sampling: 100 points per row by 68 rows

Effect of Sampling Interval - 1

Look in vicinity of the picket fence:

100	100	100	100	100	100
100	100	100	100	100	100
100	100	100	100	100	100
100	100	100	100	100	100

NO EVIDENCE OF THE FENCE!

40	40	40	40	40	40
40	40	40	40	40	40
40	40	40	40	40	40
40	40	40	40	40	40

White Image!

Dark Gray Image!

Effect of Sampling Interval - 2

Look in vicinity of picket fence:

40	100	40	100	40
40	100	40	100	40
40	100	40	100	40
40	100	40	100	40

What's the difference between this attempt and the last one?

Now we've got a fence!

Consider the repetitive structure of the fence:

Sampling Intervals

Case 1: s' = d

The sampling interval is equal to the size of the repetitive structure

NO FENCE

Case 2: s = d/2

The sampling interval is one-half the size of the repetitive structure

FENCE

- IF: the size of the smallest structure to be preserved is d
- THEN: the sampling interval must be smaller than d/2
- Can be shown to be true mathematically
- Repetitive structure has a certain frequency ('pickets/foot')
 - To preserve structure must sample at twice the frequency
 - Holds for images, audio CDs, digital television....
- Leads naturally to Fourier Analysis (later in course)

Human Eye Sampling

- Fine near the center of the retina (fovea)
- Coarse at the edges
- Strategy:
 - Detect points of interest with low resolution samping
 - "Foveate" to point of interest and use high resolution sampling.

Human Eye Sampling

Cartesian image ----- Log-Polar representation ----- Retinal representation

Rough Idea: Ideal Case

- Rough Idea: Actual Case
 - Can't realize an ideal point function in real equipment
 - "Delta function" equivalent has an area
 - Value returned is the average over this area

Projection through a pixel

area of the surface intersecting

the solid angle!

Digitized 35mm Slide or Film

Computer Vision

 Goal: determine a mapping from a continuous signal (e.g. analog video signal) to one of K discrete (digital) levels.

Computer Vision

- I(x,y) = continuous signal: $0 \le I \le M$
- Want to quantize to K values 0,1,...K-1
- K usually chosen to be a power of 2:

K:	#Levels	#Bits
	2	1
	4	2
	8	3
	16	4
	32	5
	64	6
	128	7
	256	8

- Mapping from input signal to output signal is to be determined.
- Several types of mappings: uniform, logarithmic, etc.

K=2

K=4

Linear Ramp

Computer Vision

K=2 (each color)

K=4 (each color)

Computer Vision

Digital X-rays

Digital X-rays: 8 is enough?

Digital X-rays: 1 bit

Digital X-rays: 2 bits

Digital X-rays: 3 bit

Digital X-rays: 8 is enough?

Gray Levels-Resolution

Computer Vision

Trade Off

- More gray levels can be simulated with more resolution.
- A "gray" pixel:

Doubling the resolution in each direction adds at least four new gray levels. But maybe more?

Pseudocolor

Digital X-rays: 8 is enough?

- Uniform sampling divides the signal range [0-M] into K equal-sized intervals.
- The integers 0,...K-1 are assigned to these intervals.
- All signal values within an interval are represented by the associated integer value.
- Defines a mapping:

- Signal is log I(x,y).
- Effect is:

Detail enhanced in the low signal values at expense of detail in high signal values.

Logarithmic Quantization

Quantization Curve

Introduction to

Histogram Equalization

Brightness Equalization

- Two methods:
 - Change the data (histogram equalization)
 - Use a look up table (brightness or color remapping)

Computer Vision

Maps Brightness Value -> RGB Color

Brightness Equalization

- Two methods:
 - Change the data.
 - Use a look up table.

Computer Vision

Maps Brightness Value -> RGB Color

- $0 \rightarrow (0, 0, 0)$
- **1** -> (0, 0, 0)
- $2 \rightarrow (0, 0, 0)$
- **3** -> (0, 0, 0)
- ...
- **130->** (0,0,0)
- **131->** (.01, .01, .01)
- **132->** (.02,.02,.02)
- **...**
- 200->(1,1,1)
- 201->(1,1,1)
- **...**
- 255 -> (1, 1, 1)

Computer Visior

Brightness Equalization

